Power domination in cylinders, tori, and generalized Petersen graphs

نویسندگان

  • Roberto Barrera
  • Daniela Ferrero
چکیده

A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the cylinders Pn Cm for integers n ≥ 2, m ≥ 3, and the toriCn Cm for integersn,m ≥ 3.We apply similar techniques to present upper bounds for the power domination number of generalized Petersen graphs P(m,k ). We prove those upper bounds provide the exact values of the power domination numbers if the integersm,n, and k satisfy some given relations. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 000(00), 000–00

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Domination number of Generalized Petersen Graphs

Generalized Petersen graphs are an important class of commonly used interconnection networks and have been studied . The total domination number of generalized Petersen graphs P(m,2) is obtained in this paper.

متن کامل

On Power Domination of Generalized Petersen Graphs

The power dominating problem is a variation of the classical domination problem in graphs. Electricity company use phase measurement units (PMUs) to produce the measuring data of a system, and use these data to estimate states of the system. Because of the high cost of PMUs, minimizing the number of PMUs on a system is an important problem for electricity companies. This problem can be modeled ...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

The exact domination number of the generalized Petersen graphs

Let G = (V, E) be a graph. A subset S ⊆ V is a dominating set of G, if every vertex u ∈ V − S is dominated by some vertex v ∈ S. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2...

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Networks

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2011